3.513 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=149 \[ \frac{(3 A+B-5 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(A-B+C) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

(2*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) + ((3*A + B - 5*C)*ArcTan[(Sqrt[a]*S
in[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B + C)*Sqrt
[Cos[c + d*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.433656, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {3041, 2982, 2782, 205, 2774, 216} \[ \frac{(3 A+B-5 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(A-B+C) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

(2*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) + ((3*A + B - 5*C)*ArcTan[(Sqrt[a]*S
in[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B + C)*Sqrt
[Cos[c + d*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

Rule 3041

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((a*A - b*B + a*C)*Cos[e + f*x]*(
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx &=-\frac{(A-B+C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{\int \frac{\frac{1}{2} a (3 A+B-C)+2 a C \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{(A-B+C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(3 A+B-5 C) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}+\frac{C \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=-\frac{(A-B+C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac{(3 A+B-5 C) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}-\frac{(2 C) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^2 d}\\ &=\frac{2 C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^{3/2} d}+\frac{(3 A+B-5 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B+C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 3.08252, size = 366, normalized size = 2.46 \[ \frac{\cos ^3\left (\frac{1}{2} (c+d x)\right ) \left (-\frac{2 (A-B+C) \sqrt{\cos (c+d x)} \tan \left (\frac{1}{2} (c+d x)\right ) \sec \left (\frac{1}{2} (c+d x)\right )}{d}+\frac{\sqrt{2} e^{\frac{1}{2} i (c+d x)} \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (-i \sqrt{2} (3 A+B-5 C) \log \left (1+e^{i (c+d x)}\right )+3 i \sqrt{2} A \log \left (\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )+i \sqrt{2} B \log \left (\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )+4 i C \log \left (1+\sqrt{1+e^{2 i (c+d x)}}\right )-5 i \sqrt{2} C \log \left (\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )-4 i C \sinh ^{-1}\left (e^{i (c+d x)}\right )+4 C d x\right )}{d \sqrt{1+e^{2 i (c+d x)}}}\right )}{2 (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

(Cos[(c + d*x)/2]^3*((Sqrt[2]*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(4*C*d*x - (
4*I)*C*ArcSinh[E^(I*(c + d*x))] - I*Sqrt[2]*(3*A + B - 5*C)*Log[1 + E^(I*(c + d*x))] + (4*I)*C*Log[1 + Sqrt[1
+ E^((2*I)*(c + d*x))]] + (3*I)*Sqrt[2]*A*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]] + I
*Sqrt[2]*B*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]] - (5*I)*Sqrt[2]*C*Log[1 - E^(I*(c
+ d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]]))/(d*Sqrt[1 + E^((2*I)*(c + d*x))]) - (2*(A - B + C)*Sqrt[Cos
[c + d*x]]*Sec[(c + d*x)/2]*Tan[(c + d*x)/2])/d))/(2*(a*(1 + Cos[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.142, size = 460, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x)

[Out]

-1/4/d*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^2*(-2*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)-2*A*cos
(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+2*A*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+2*B*cos(d*x+c)^3*
(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+3*A*arcsin((-1+cos(d*x+c))/sin(d*x+c))*2^(1/2)*sin(d*x+c)*cos(d*x+c)^2+2*A*(
cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+B*sin(d*x+c)*cos(d*x+c)^2*2^(1/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))-5*C*arcs
in((-1+cos(d*x+c))/sin(d*x+c))*2^(1/2)*sin(d*x+c)*cos(d*x+c)^2-2*B*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2
)-8*C*sin(d*x+c)*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))-2*C*cos(d*x+c)^3
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+2*C*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/(cos(d*x+c)/(1+cos(d*x+
c)))^(3/2)/a^2/cos(d*x+c)^(1/2)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)